A stochastic thermodynamic model for the gradual thermal transformation of SMA polycrystals
نویسنده
چکیده
The martensitic–austenitic phase transformation of a polycrystalline shape memory alloys (SMA) occurs gradually over a range of temperatures even though the monocrystal undergoes a first-order transition (at a single temperature). Factors such as material inhomogeneities and internal stresses in a polycrystal are believed to cause the spread in transformation temperatures. In this work, we assume that the local regions of a polycrystal transform at a single temperature, characteristic of a first-order transition; this temperature is taken to vary from one region to another. The first-order transition of a generic local region is modeled with the Boyd–Lagoudas thermodynamic theory and a simple averaging process is used to derive the overall response of the polycrystal. The concept of a statistical distribution in the first-order transition temperatures is then introduced. By reducing the proposed stochastic thermodynamic theory to the special case of a pure thermal transformation in a polycrystal, it becomes possible to obtain the parameters of the statistical distribution from calorimetric data. This new approach renders unnecessary the customary practice in the SMA literature to artificially assign ‘start’ and ‘finish’ transformation temperatures to a SMA polycrystal. The statistical distribution is also used as a basis to correlate strain recovery against temperature measurements from repetitive cycles of a thermally induced transformation in untrained polycrystalline SMA wires.
منابع مشابه
Adaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کاملCoupled Thermoelasticity Impact Response Analysis of Composite Plates with SMA Wires in Thermal Environments
Impact responses of rectangular composite plates with embedded shape memory alloy (SMA) wires are investigated in the present research. The plate is assumed to be placed in a thermal environment; so that in contrast to the available researches in the field, the shape memory and ferroelasticity effects have to be considered also in addition to the superelasticity. The governing equations are der...
متن کاملCooling rate optimization of as-cast consciously cast steel
Abstract: A combination of a finite element method (FEM) algorithm with ANSYS codes and post image processing of NDT ultrasonic images along with laboratory cooling experiments and microstructural analysis provide a guideline to determine the optimum cooling rate for any grade of steel in which the highest productivity can be achieved without any degradation of the cast steel products. The sugg...
متن کاملInfluence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires
In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...
متن کاملA Stochastic Operational Planning Model for Smart Power Systems
Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independe...
متن کامل